Vol. 3 No. 2 (2023): Journal of Machine Learning for Healthcare Decision Support
Articles

Machine Learning Models for Enhancing Cardiovascular Disease Management: AI Approaches for Predicting Risk, Monitoring Health, and Personalizing Treatment Plans

Dr. Natalia Popova
Associate Professor of Artificial Intelligence, National Research University – Electronic Technology (MIET), Russia
Cover

Published 03-12-2023

Keywords

  • Cardiovascular Disease,
  • Predicting Risk,
  • Monitoring Health,
  • Personalizing Treatment Plans

How to Cite

[1]
Dr. Natalia Popova, “Machine Learning Models for Enhancing Cardiovascular Disease Management: AI Approaches for Predicting Risk, Monitoring Health, and Personalizing Treatment Plans”, Journal of Machine Learning for Healthcare Decision Support, vol. 3, no. 2, pp. 63–82, Dec. 2023, Accessed: Jan. 22, 2025. [Online]. Available: https://medlines.uk/index.php/JMLHDS/article/view/49

Abstract

Effective cardiac health care has a dramatic effect on patients’ prognosis, whether they have known cardiovascular disease or whether they are simply at risk for developing it in their future. On a global level, adherence to treatment guidelines and coordinated disease management strategies is becoming an important priority in the quest for improved healthcare outcomes, patient experiences, and the use of operational resources. It is not only one of the most important diseases in many countries but, along with cancer, it is also one of the leading causes of preventable death. Despite the progress that has been achieved in recent decades, it is a multifaceted ailment that also poses formidable health challenges. On the one hand, like many forms of cancer, it may be asymptomatic until presenting abruptly in the form of an acute cardiovascular event like a heart attack or stroke. A silent presentation, on the other hand, is the primary cause of symptoms that may vary substantially from one person to the next and may be brought on by other medical issues or moments of physical or emotional stress.

Downloads

Download data is not yet available.

References

  1. Pushadapu, Navajeevan. "AI-Driven Solutions for Enhancing Data Flow to Common Platforms in Healthcare: Techniques, Standards, and Best Practices." Journal of Computational Intelligence and Robotics 2.1 (2022): 122-172.
  2. Bao, Y.; Qiao, Y.; Choi, J.E.; Zhang, Y.; Mannan, R.; Cheng, C.; He, T.; Zheng, Y.; Yu, J.; Gondal, M.; et al. Targeting the lipid kinase PIKfyve upregulates surface expression of MHC class I to augment cancer immunotherapy. Proc. Natl. Acad. Sci. USA 2023, 120, e2314416120.
  3. Gayam, Swaroop Reddy. "AI for Supply Chain Visibility in E-Commerce: Techniques for Real-Time Tracking, Inventory Management, and Demand Forecasting." Distributed Learning and Broad Applications in Scientific Research 5 (2019): 218-251.
  4. Nimmagadda, Venkata Siva Prakash. "AI-Powered Risk Management and Mitigation Strategies in Finance: Advanced Models, Techniques, and Real-World Applications." Journal of Science & Technology 1.1 (2020): 338-383.
  5. Putha, Sudharshan. "AI-Driven Metabolomics: Uncovering Metabolic Pathways and Biomarkers for Disease Diagnosis and Treatment." Distributed Learning and Broad Applications in Scientific Research 6 (2020): 354-391.
  6. Sahu, Mohit Kumar. "Machine Learning Algorithms for Enhancing Supplier Relationship Management in Retail: Techniques, Tools, and Real-World Case Studies." Distributed Learning and Broad Applications in Scientific Research 6 (2020): 227-271.
  7. Kasaraneni, Bhavani Prasad. "Advanced Machine Learning Algorithms for Loss Prediction in Property Insurance: Techniques and Real-World Applications." Journal of Science & Technology 1.1 (2020): 553-597.
  8. Kondapaka, Krishna Kanth. "Advanced AI Techniques for Optimizing Claims Management in Insurance: Models, Applications, and Real-World Case Studies." Distributed Learning and Broad Applications in Scientific Research 5 (2019): 637-668.
  9. Kasaraneni, Ramana Kumar. "AI-Enhanced Cybersecurity in Smart Manufacturing: Protecting Industrial Control Systems from Cyber Threats." Distributed Learning and Broad Applications in Scientific Research 5 (2019): 747-784.
  10. Pattyam, Sandeep Pushyamitra. "AI in Data Science for Healthcare: Advanced Techniques for Disease Prediction, Treatment Optimization, and Patient Management." Distributed Learning and Broad Applications in Scientific Research 5 (2019): 417-455.
  11. Kuna, Siva Sarana. "AI-Powered Techniques for Claims Triage in Property Insurance: Models, Tools, and Real-World Applications." Australian Journal of Machine Learning Research & Applications 1.1 (2021): 208-245.
  12. Nimmagadda, Venkata Siva Prakash. "Artificial Intelligence for Automated Loan Underwriting in Banking: Advanced Models, Techniques, and Real-World Applications." Journal of Artificial Intelligence Research and Applications 2.1 (2022): 174-218.
  13. Pushadapu, Navajeevan. "Advanced AI Algorithms for Analyzing Radiology Imaging Data: Techniques, Tools, and Real-World Applications." Journal of Machine Learning for Healthcare Decision Support 2.1 (2022): 10-51.
  14. Gayam, Swaroop Reddy. "AI-Driven Customer Support in E-Commerce: Advanced Techniques for Chatbots, Virtual Assistants, and Sentiment Analysis." Distributed Learning and Broad Applications in Scientific Research 6 (2020): 92-123.
  15. Nimmagadda, Venkata Siva Prakash. "Artificial Intelligence and Blockchain Integration for Enhanced Security in Insurance: Techniques, Models, and Real-World Applications." African Journal of Artificial Intelligence and Sustainable Development 1.2 (2021): 187-224.
  16. Putha, Sudharshan. "AI-Driven Molecular Docking Simulations: Enhancing the Precision of Drug-Target Interactions in Computational Chemistry." African Journal of Artificial Intelligence and Sustainable Development 1.2 (2021): 260-300.
  17. Sahu, Mohit Kumar. "Machine Learning for Anti-Money Laundering (AML) in Banking: Advanced Techniques, Models, and Real-World Case Studies." Journal of Science & Technology 1.1 (2020): 384-424.
  18. Kasaraneni, Bhavani Prasad. "Advanced Artificial Intelligence Techniques for Predictive Analytics in Life Insurance: Enhancing Risk Assessment and Pricing Accuracy." Distributed Learning and Broad Applications in Scientific Research 5 (2019): 547-588.
  19. Kondapaka, Krishna Kanth. "Advanced AI Techniques for Retail Supply Chain Sustainability: Models, Applications, and Real-World Case Studies." Journal of Science & Technology 1.1 (2020): 636-669.
  20. Kasaraneni, Ramana Kumar. "AI-Enhanced Energy Management Systems for Electric Vehicles: Optimizing Battery Performance and Longevity." Journal of Science & Technology 1.1 (2020): 670-708.
  21. Pattyam, Sandeep Pushyamitra. "AI in Data Science for Predictive Analytics: Techniques for Model Development, Validation, and Deployment." Journal of Science & Technology 1.1 (2020): 511-552.
  22. Kuna, Siva Sarana. "AI-Powered Solutions for Automated Underwriting in Auto Insurance: Techniques, Tools, and Best Practices." Journal of Science & Technology 1.1 (2020): 597-636.